
032 Performance

specific range (jet) = nm / unit mass fuel

jet: max range = minimum SFC

tan(y) = D / L ROD = V * D / L

032-02 Performance Class B: Single-engine Aeroplanes

takeoff

50ft speed: \geq 1.2 V_{S1}

landing

 $V_{REF} = 1.3 V_{S0}$

1.25 TOD \leq TORA, with stop/clearway: TOD \leq TORA & 1.3 TOD \leq ASDA & 1.15 \leq TODA

surface	condition	factor
grass (on firm soil)	dry	1.2
up to 20 cm long	wet	1.3
paved	wet	1.0
upslope per 1%		1.05

1.43 LD ≤ LDA

surface	condition	factor
grass (on firm soil)	dry	1.15
any	wet	1.15
downslope per 1%		1.05

NGM = NAM * GS / TAS

032-03 Performance Class B: Multi-engine Aeroplanes

Takeoff

50ft speed: \geq 1.1 V_{MC}, \geq 1.2 V_{S1}

	Track Changes 0-15°	Track Changes >15°
VMC	300 m	600 m
IMC	600 m	900 m

obstacle requirements

* from 50 ft to the cloud base, gradient needs to be all-engine gradient * 0.77

* when reaching clouds: OEI ROC

enroute

not above altitude exceeding that at which the ROC equals 300 ft/min with all engines max continuous power

032-04 Performance Class A: Aeroplanes Certificated Under CS25 Only

032-04-01 Takeoff

1 st segment	ends when gear is up
2 nd segment	minimum of 400 ft, flaps are not retracted
3 rd segment	transition or acceleration segment change from takeoff config to clean may be limited by take-off thrust time limit max continuous thrust at the end
4 th segment	transition to enroute, at least 1500 ft

VR	rotation speed, $> 1.05 V_{MCA}$
V_{MC}	minimum control speed with critical engine inoperative

V_{MCA}	minimum control speed in take-off config
V_{MCG}	minimum control speed on the ground (determined by engine thrust & rudder deflection)
V _{MU}	minimum unstick speed
V_{MBE}	maximum break energy speed
V ₁	take-off decision speed
V ₂	take-off safety speed (free air safety speed) – minimum speed to be reached at screen height usually lower than $V_{\rm X}$
V _{2MIN}	minimum take-off safety speed >1.13 V _{SR} turbojets, 2/3 engine turboprops >1.08 V _{SR} turbojets with provisions for significant V _{SR} reduction during OEI, 4 engine turboprops >1.1 V _{MCA}
V_{SR}	stall reference speed (usually 1.06 Vs)
V_{LOF}	lift off speed
V_{SR0}	reference stall speed in landing config (usually 6% higher than V_{S0})

reduced take-off thrust	engine life, reduce noise, same speeds, TODR & ASDR increase
	reduced speeds, reduce of V_1 if limited by VMCG, shorter ASDR, higher TOM if limited by ASDA. TODR increases, ASDR decreases

obstacle clearance (increasing width):

for wingspan < 60 m: 60 m + $\frac{1}{2}$ of wingspan + 0.125 * D

for wingspan > 60 m : 90 m + 0.125 * D

ACN < PCN (rigid * 1.05, flexible * 1.1)

032-04-02 Climb

cross over altitude - when IAS and Mach are same TAS

032-04-03 Cruise

CI = TIME / FUEL

032-04-06 Approach and Landing

 $V_{\text{REF}} \ge 1.23 V_{\text{SR0}}$ jets LDA * 1.67 props LDA * 1.43 weg LD * 1.15